这是本文的第二部分,为异质变化检测(HCD)问题提供了新的策略,即从图形信号处理(GSP)的角度解决HCD。我们构造一个图表以表示每个图像的结构,并将每个图像视为图表上定义的图形信号。这样,我们可以将HCD问题转换为图表上定义的系统的信号响应的比较。在第一部分中,通过比较顶点域的图之间的结构差来衡量变化。在本第二部分中,我们分析了来自光谱域的HCD的GSP。我们首先分析同一图上不同图像的光谱特性,并表明它们的光谱表现出共同点和差异。特别是,正是变化导致了光谱的差异。然后,我们提出了HCD的回归模型,该模型将源信号分解为回归信号并更改信号,并且需要回归的信号具有与同一图上的目标信号相同的光谱属性。借助图光谱分析,提出的回归模型是灵活且可扩展的。对七个真实数据集进行的实验显示了该方法的有效性。
translated by 谷歌翻译
本文为异构变化检测(HCD)问题提供了一种新的策略:从图形信号处理(GSP)的角度解决HCD。我们为每个图像构造一个图表以捕获结构信息,并将每个图像视为图形信号。通过这种方式,我们将HCD转换为GSP问题:对两个图上定义的不同系统的响应的比较,试图找到结构性差异(第I部分)和信号差异(第II部分)异质图像之间的变化。在第一部分中,我们用顶点域的GSP分析了HCD。我们首先证明,对于未改变的图像,它们的结构是一致的,然后在两个图上定义的系统上的相同信号的输出相似。但是,一旦区域发生变化,图像的局部结构会发生变化,即包含该区域的顶点的连通性发生变化。然后,我们可以比较通过在两个图上定义的过滤器的相同输入图信号的输出信号以检测更改。我们设计了来自顶点域的不同过滤器,可以灵活地探索原始图中隐藏的高阶邻域信息。我们还从信号传播的角度分析了变化区域对变化检测结果的有害影响。在七个真实数据集上进行的实验显示了基于顶点域滤波的HCD方法的有效性。
translated by 谷歌翻译
Reinforcement Learning (RL) is currently one of the most commonly used techniques for traffic signal control (TSC), which can adaptively adjusted traffic signal phase and duration according to real-time traffic data. However, a fully centralized RL approach is beset with difficulties in a multi-network scenario because of exponential growth in state-action space with increasing intersections. Multi-agent reinforcement learning (MARL) can overcome the high-dimension problem by employing the global control of each local RL agent, but it also brings new challenges, such as the failure of convergence caused by the non-stationary Markov Decision Process (MDP). In this paper, we introduce an off-policy nash deep Q-Network (OPNDQN) algorithm, which mitigates the weakness of both fully centralized and MARL approaches. The OPNDQN algorithm solves the problem that traditional algorithms cannot be used in large state-action space traffic models by utilizing a fictitious game approach at each iteration to find the nash equilibrium among neighboring intersections, from which no intersection has incentive to unilaterally deviate. One of main advantages of OPNDQN is to mitigate the non-stationarity of multi-agent Markov process because it considers the mutual influence among neighboring intersections by sharing their actions. On the other hand, for training a large traffic network, the convergence rate of OPNDQN is higher than that of existing MARL approaches because it does not incorporate all state information of each agent. We conduct an extensive experiments by using Simulation of Urban MObility simulator (SUMO), and show the dominant superiority of OPNDQN over several existing MARL approaches in terms of average queue length, episode training reward and average waiting time.
translated by 谷歌翻译
多尺度体系结构和注意力模块在许多基于深度学习的图像脱落方法中都显示出有效性。但是,将这两个组件手动设计和集成到神经网络中需要大量的劳动力和广泛的专业知识。在本文中,高性能多尺度的细心神经体系结构搜索(MANAS)框架是技术开发的。所提出的方法为图像脱落任务的最爱的多个灵活模块制定了新的多尺度注意搜索空间。在搜索空间下,建立了多尺度的细胞,该单元被进一步用于构建功能强大的图像脱落网络。通过基于梯度的搜索算法自动搜索脱毛网络的内部多尺度架构,该算法在某种程度上避免了手动设计的艰巨过程。此外,为了获得强大的图像脱落模型,还提出了一种实用有效的多到一对训练策略,以允许去磨损网络从具有相同背景场景的多个雨天图像中获取足够的背景信息,与此同时,共同优化了包括外部损失,内部损失,建筑正则损失和模型复杂性损失在内的多个损失功能,以实现可靠的损伤性能和可控的模型复杂性。对合成和逼真的雨图像以及下游视觉应用(即反对检测和分割)的广泛实验结果始终证明了我们提出的方法的优越性。
translated by 谷歌翻译
Fovea本地化是眼科医学图像分析中最受欢迎的任务之一,其中Macula Lutea的中心点的坐标,即Fovea Centris,应基于彩色眼底图像计算。在这项工作中,我们将本地化问题视为分类任务,其中X和Y轴的坐标被认为是目标类。此外,软MAX激活功能和跨熵损失函数的组合被修改为其多尺度变化,以鼓励预测的坐标与地面真理密切相关。基于彩色眼底摄影图像,我们经验证明,所提出的MultiScale Softmax跨熵产生比Vanilla版本更好的性能,而不是Sigmoid激活的平均平方误差,这提供了一种新颖的坐标回归方法。
translated by 谷歌翻译
在本文中,我们提出了一种基于深度学习的模型来检测北半球的乌斯多利飓风(ETCS),同时开发一种处理图像的新颖工作流程并为ETCS产生标签。我们首先通过从Bonfanti et.al调整一种方法来标记旋风中心。 [1]并建立三类标签等标准:发展,成熟和下降阶段。然后,我们提出了一个标签和预处理数据集中的图像的框架。一旦图像和标签准备好用作输入,我们创建了指定单拍摄检测器(SSD)的对象检测模型以适应我们数据集的格式。我们用两个设置(二进制和多字符分类)的标签数据集培训并评估我们的模型,同时保留结果记录。最后,我们实现了较高的性能,检测成熟阶段(平均平均精度为86.64%),以及检测所有三类的等等的可接受结果(平均平均精度79.34%)。我们得出结论,单次探测器模型可以成功地检测不同阶段的等等,并且在其他相关设置中的ETC检测的未来应用中表现出很大的潜力。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译
Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.
translated by 谷歌翻译